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A B S T R A C T

This paper presents and discusses a lllatl~el~~[ttical  f[)rl~~alisl~~fc)r  simulation discrete
event dynamic (DED)-a special type. of “mm-made” systems to serve  specific purposes of
information processing. The nm.in  objective of this work is to demonstrate that the nlath-
cnmtid formalism fcm DED can be based upon terminal model of Newtonian clynamics
which allows one to relax  Lipschitz conditions at some discrc.te  points.

1 .  INTRODUCTION

Complexity of dynamid systmn performance can 1x2 significantly enriched  by exploit-
ing a terminal model of nonlinear dynamics intrcxlucec~  ancl discussed in [3,4]. As shown
th&e, this model can ciipture  stochastic properties of inf(mnation processing without uti-
lizing a random nuder  generators: a multi-choice response to a ddxmninistic  massage is
prcwided  hy a failure of uniqueness of the solution due to relaxation of Lipschitz condi-
tions at some discrete points. However, since terminal dynamics is differentiable almost
cvcrywhcm  (excluding these discrete points), it preserves most of the analytical structure
of mathematical formalism of classical thecmy of cliffermtial  equaticms. A combination
of such ‘(cent r.dictory”  properties - the analiti ci ty and discmctncss - gives motivation to
simulate discrete cvmt systems using terminal dynamics.

Discrete event dynamics represents a special type of “man-made’ ) systems to serve
specific purpostw  of inffmnation  processing [1]. Models of such systems fall id o several
broacl  categories of vari(nw  levels of alxtractione At the logical level,  one is only concerned
with the logical order of the events, i.e., with qualitative, or structural behavior of a system;
these nlod(~ls  are usually deterministic and untimed. At the performance level, the models
involve random event lifetimes and other l)robabilistic  entities, .and are p r i m a r y  c o n c e r n e d
with chard crizing the quantitative aspects of tl)e system. The performance models are
usually based upon generalized semi-Markov processes and st dmst ic Petri nets.

This paper presents and discusses a mathematical formalism for discrctc  events sys-
tems based upon terminal m(dd  of Newt(mian  dynamics.

1



.

2 .  TIME-DRIVEN DISCRETE SYSTEMS

A hrcd class of complex dynamical bell avicm can be derived from a simple differential
equation [3]:

~ = X113 Sill Wf,,  U =  COSt (1)

The soluticm to Eq. (1) can bc pmwnted  in a C1OS(!C1  form. hldcml, assuming that x + O
at t = O, one obtains a regular  scJution:

and a singular solution (an equilibrium point):

Clearly, the Lipzschitz condition at the quiliblimn point x == O fails since

(2)

(3)

(4)

As follows from (2), two different solutions arc possiljle fox %lmost  the. same” initial
conditions. The fundamental prc)pert  y of this resdt  is that, tht! [Ii vt?rgmce of these  solutions

X?ter,  a :

=00, 1X.1-O (5)

where  tO is an arbitrarily small (but finite) lxlsitive quantity. T]lc .ratc  c)f divcrgenc.e  (5) can
h ddind in an arbitrmily  small time intend, because the initial infinitesimal distance
bctwccm  the s(duti(ms  (2) beccmles finite during tile small interval  t ~. One should recall
that in the classical case whm the Lipschit  z ccm(lit icm is sati sfid,  the dist ancc bet wcen
two cliverging soluti(ms  can become finite only at t + cm if initially this distance was
infinitesimal.

The soluti(m  (2) and (3) co-exist at t = O, and that is lmssiblc Imcause  at this point
the Lipsc])itz  conditi(m fails (see Eq. 4).
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Since:

~> Oat IzI+O, t>O, (6)

the singular scdution (3) is unstdde,  and it departs from rest follc)wing Eq. (3). This
solution has two (positive and negative) branches, and each bran ch can be chosen with
the same prc)babilit  y 1/2. It should be noticed that m a result of (4), the motion of
the particle can be initiated Ly infinitesimal disturbances (that never  cm occur when the
Lipschitz ccmdition  is in place:  an infinitesimal initial disturbance cannot lmcomc finite  in
finite time).

Strictly speaking, the s(dution  (2) is valicl  only in the time interval

(7)

ancl at t = ~ it cwincicles  with the singdar  soluti(m  (3). For t > 27r/u, Eq. (2) becomes
unstable, ancl the moticm repeats itself to the accuracy of the sign in Eq. (2).

Hence, the scduticm  performs oscillations with respect to its zero value in such a way
that the positive  and negative branches of the solllticm  (2) alternate ranchnly  after each
pcriocl  cquial to 2T/w.

Let  us introduce  another variable:

j=x, (y=oat.z=  o). (8)

After the first time interval t = ~

After the second time interval t = ~

(9)

(lo)

etc.

3



obviously, the variable y performs an unrestricted symmetric random walk: after each
time period ~ = 27r/u it changes its value on +h. The probability f(y, t) is governed hy
the following diffcmnc.e  equation:

where  h is expressdby  Eq. (9).

Eq. (11) clcfines~  asaf[lllctiol~  oftwocliscrett:  arg~ll~~ellts:

For convenience, we will lieep for discrete variable y and t the same notations as for
their continuous vmsi(ms.

By change of the variables:

z = $c@),y  = y- ‘(z)

one can obtain a stochastic process with a prescril.d  probability distribution:

dp  – ]
?/)(z,  i) = f[w-](z),q I ---&-- I

(13)

(14) .

implemented by the dynamical system (1), (8), and (13).

Here z is also c.onsiclerd as a discrete  variahlc  cl~anging  at mc.h time-step ~ according
to Eq. (12) :LIIC] (13).

It is important to emphasize that the system (1), (8), (13) does not have any random
input: the randomness is “gencratecl”  by the diffmmtial  opmitor  in (1) due to violation
of the Lipschit z c.mdit ion.

Let  us modify Eq, (1) as following:

(15)



whcm y is defim?d  by Eq, (8),

The scJution to Eq. (lb) can be written in the form similar to (2):

u=

where  h is given l~y Eq. (9), while
(14).

Now we are N?ady to introduce

[

* 49(h) ~w 312— . sin
3U

#1 (16)

the probability density of p(y, t) is expressed by Eq.

a d ymmical  m odd for the gmcdized  random walk:

(3U)5L’
i)= au,  a== — —  = == Collst

64@)

Indeed, after the first time interval t =- ~

(17)

(18)

After the third time intt?rvd  t = ~-

‘V = +p(h) * v(h) etc.. (19)

Tlms, the variabh? u perf(mns a symmetric gmeralizcxl  rallcknn walk: after each time
period ~ = 2m/w, it changes it value on +p(h).  But p(h), in turn, ‘is also a ranclom
variable: its probahilit y dc?nsit  y follows from Eqs. (13) and (14). Hence,  at each step the
variable v have a pr( )bal)ilit  y pk to move from any point vo to an arbitrarily sdcc.td  point
~)k .

It should be emphasized that this gcneralizfd  random walk is implcmmtd  by the
dynamical syst(?m  (1), (8), (14), (1 S), and (18).CcJl~siclc?lil]g  v as a discrete variable at
t = 117-

cme  c)btains  the

(21)
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(@-l(kh,t)pk=f[y-l(kh, q] l———--l
dz

(23)

ancl n is the nuder of the discretevalues  in (12).

Applying the terminology of Discrete Evt?nt  Systems, both simple and generalized
dynamical models of Huldom walks can be characterized as time-drivem systems, since
hcrewithmmry  “clocktic.k”  tllestate  isexlJected  tt)cllallge  witllal}rcscrilJccl  1Jrollal]ility.

We will stress that although the dynamical system (l), (8),  (14), (1 S), and (18)
has randcm  solution, this randomness is wall-organized: it cm be uniquely clesc.ribcd
in prohhility  tcmns  with the aid of Eq. (21). Imle(’cl,  if tile initial probability distribution

Q’(V, o) = 6’()(1)) (24)

f(lJ, o) = j,(y) (25)

are givc?n, then all the variabk?s  in the right-haxld part of Eq. (21) can be computed at
each time step ~, and that uniquely defines the left-hand part (If 13q. (21), and therefore,
the evoluti(m of the prolxhility  distribution @(v, t).

Bas(?d upon the? system (l), (8), (14), (15), and (18), mm can find the functions
d’o(v),fo(y)  and ~(z) in Eqs, (24), (2S) and (26), rc?spcctivdy,  such that they Providt?  a
rcq~lirc?clevollltiollc)f”  the probtibility distribution +(v, i).

%fu we wc?r(?c(mcerm?d  with tllel>erfc)rlllallr(?a  sl>ccts of the tilllc-cllivcll clyll:~lllics.
(ll~tl~(~l()gical  lc~v~?l,  tl~{?(jl~ly flll~c.tic)l~  p.(z) il~Ecl.  (24) col)tril~~lt(?s  il~totl~e logic:~ls tr~lct~~re
of the Systt?ln: it prescrik!s  the probabilities j)k in Eq. (21) that the solution move from
any point vo to an arbitrarily sdectd  pc)int  vk.

3 .  EVENT-DRIVEN DISCRETE SYSTJ3MS

Lt?t  usrc?turnto  Eq. (1) andassum?t hat it is driven by :iv:~llisl~illgly  sl:~ttllil~l>~lt  c:

From th~?  vic?wpoint  of inf(mmation  proct?ssing,  this input can lm considered as am:wsage,
or an event. This massage can be. ignored wht?n  ~ # O, or wllm  i = O, but the system
is stable, i.c?., x = 7ro, 2n_w,  . . . etc. However, it lmccnms significant during the instants of
instability whf?n i = O at t = O, T/2u, . . . etc..  Imlecd, at thc?~e  instants, the solution to (27)
would have a choic(? to h? pwitivc?  m negative if E = O, (SW 13q. (2)). However, with E # O
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Sgn z = Sgn & at i = o,7r/2Ld,  . . . etc.. (2s)

i.e. the sign cjf & at the critical instances of time (28) uniquely ddimw the evolution of the
dynamical systcm (27).

Actually the event & may rc?pmsent  an output of a mic.rosyst  em which uniquely controls
the bclmvior  of the original dynamical systt?m  (27).

The solution to Eq. (8) now becomes deterministic. if sgn e # O at critical points
(28), and instead of Eqs. (9), and (10), one obtains, respectively:

(29)

IJ = h Sgn El + h Sglls,  +  e t c . (30)

where  &], e,, . . . are tht~ valut?s  c)f & at t =. O, 27r/w etc..,  respectively.

The probability y ~(y, t ), instead c)f Eq. (11), is govcrnd  by the following differ~?nc.e
equation:

(31)

Whm!

Actdly th(? evolution of th(? probability distribution in Eq. (31) is reprwmtd  I)y
rigicl shifts of th{? initial probability distrilmtiol~  .f(y, O), Illlless ~gll & = 0.

Let  us modify now Eq. (1S) in the same way as Eq. (l):

(33)

Then the solution tc) Eq. (17), is written as:
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v = $7(}1) Sgn &] + p(h)  Sg!)l &2 + “ “ “ etc.

where &], &Z,” “ c are the values of e at i = O, 27r/U etc., respectively.

(34)

Unlike the previous case (see Eqs. (18-19)), now the variable  v defined by Eqs. (l), (8),
(17), and (33) perform a non-symmdric  g(?neraliz(?d  ranclom walk: after each time pmiocl
7 = 27r/w, it changes its value on p(h) sgn &, i.e., in a certain  direction Mind by the
cwent  e, (unh?ss sgn c = O). But p(h) is still a ran(loxn variable whose probability dc?nsity
follc)ws from Eqs. (13) ancl (14). Hence, at each step the varialde  v have a probability y to
ll~ov~ frol~l ~illy Poil]t  ~~o to ~tll arbitral~ sehctd  p~i Ilt llk ill the dir~ctic)l~  defkd by sgl~ &.

Introducing v by Eq. (34), one obtains the governing difference  equations for the
probal~ilit  y dist rilmt  itm of v:

@(v, i + ‘K) = jj)k {@[v -- y(kh)]  + (1 – ]))d)[v +- y(kh)]}
Ld

k=]

(35)

1“ $0(1), i)dv := 1 (36)
—Co

whcm ~)k and p arc? expressc?d  by Eqs. (23) and (32), respect  ivdy.

Thus, althougl~  the dynamical system (1), (8), (17), and (33) has random solution, its
probabilistic pr(qx?rties  are uniquely defin(?d  by Eqs. (35) and the constraint (36).

It should Ix: notitxxl  that the solution to Eqs. (35) c)r (21) does  always automatically
satisfy t 11(? constraint (36). That is why, in gen(:ral,  it is m( we mmveni~?nt  to comid(?r
@ in Eqs. (3!5) or (21), as zin auxiliaxy (not normalized) function while introducing the.
normalized probability distribution by the fol]owillg formula:

d’(v,t)ii’(v, q = ~— —
/’_q7),  t)dv.

Then

(37)

(38)



Compuing the previcmsly  considered dynamical system  (1), (8), (14), (1 S), and (1S)
with the dynamical system (1), (8), (17), and (33), Om can see a funds.ment al difference:
the latter is clriven by a massage e whose changes are independent upon the “clock tick”
of the dynamical system itself. This massage, in gener:il, can bc an output of another
clynamical  system with its own time scale, or it can clepend  upon the variables (or their
prc]babilities)  of tht? original dynamical system. IN all these cases, the massage c can be
treated  as an inclcpenchmt  event, and therefore, the clynamical  system (1), (8), (17), and
(33) is driven  by events.

In conclusion of this section we will review the structure of the solution to Eq. (35)
which describes the evolution of the probability y distrilmt  ion @(v, t).

Introducing the displacement operators

(39)

one can rewritt?  Eq. (35) in the following form:

11

{LEt – ‘- pk [pE--k
}

+(1 – p)Ek] @(v, i) = O (40)
k= 1

Applying Bc)ol’s  synholic. method, i.e. replac,illg  the operator E,, by a ccmstant  A, one
arrives at an (Ainaq  diffc?rencc? equation:

(Et - i)@ = O, x = ~l)k [])P + (1 – p)A~] = c(mst (41)
k= I

The solution to this equatitm in a symldic form is:

d’(v,  i) = Py(v) (42)

where  p(v) = @(tJ, O) is tht? initial probability  distribution of v, and 4 = 0, 1, 2, 00 “ etc..
(see Eq. (14)).

Ol)viously that for 1’ = O:

qv,i) = q?(v)

9
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Ccmtinuing
rclat  ionships:

(44)

this process for 1 = 2,3,. . . etc., one ar~ivcs at the following recurrent

(45)

Hence, based up(m the initial c.cmdition (43), the evolution of the prc]bability  distri-
bution d)(v, t) can be uniquely dt?finecl  by Eq. (4 S).

The solution to Eq. (21) can be obtained fronl (4S) if cnm set  y = 1/2.

It shcmlcl  h? t?mphasizd  that Eq. (49) is a picm?wise  linear: indeed, it is linear as long
as the massage .5 d(m not change  its sign. Hc)weve]  , since this sign may depend upon time
t, or upon the st at(? variable v, or even upon its probability  y j(v), globally Eq. (49) can be
linear  with variable c.(x?flicicnts,  or even nonlinear.

4. SYSTEMS DRIVEN BY TEMPORAL EVENTS

In this section we will assume that the mcss:ir;e  e is given as a function of time :

&  = qi) (46)

We will start with a simplified version of the system (l), (S), (17), (33), assuming that
in Eq. (14)

{
Y if I z l.< nhy= ‘“
O otherwise

(47)

This means  that al each state the variable v have equal probability to have steps
ill, 42h, “ “ “ & 7111.
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u = yul/3  sin d + s(i), I &(i) 1<<1 u \ (48)

‘i) = ml, a= const (s[!e Eq.(17)) (49)

Asslmwnalxnx?,  Eq. (11) call l)eil~~~>lell~ei~  tc?cll~y tl~eclyllal~~ic:ilsystel~~  (l), (8) whichis
not c.oupld  with Eqs. (4S) and (49).

Now Eq. (35) describing thee volutionof  the l}rol~al~ility  clistlil]~ltioxlof  the variable
v rc![lllcx!s to:

(50)

whilepis  given Ec]. (35).

We will illustrate th(? solution to the dynamical system (48) as well as to the assoc.iatecl
l}rc)lj:il}ility  e(l~l:tti()l~  (SO) l~y:issllll~il~g  tl~iit inEq. (48):

e(t)  = .50 sin W, ’50 = Const << 1 (51)

First c.onsidm the case when u/fl is irrational, i.e.,

where m and n arc int,(?p;f?rs.

Thcm at the critical points:

E(t) # O

and thereffm,  in Eq. (47):

11
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(55, 56)

For n = 1 the solution to Eq. (!50) can be presented ill the form of a propagating
wave:

(57)

where  the signs + and - cmm?spmd  to (M) and (W), rwqx?c.tivel  y.

Actually in this particular case  the. solution rtnnains fully ddmministic  if the initial
conditions to the dynamical system (48), (49) are deterministic.. In terms of the solution
(72), this would mean that p(v) as well as ~(v + f) are the J functions.

Turning to the gy?neral  case of Eq. (S0), let us apply the solution (4 S). Then, for the
first tinm-  step:

(5s)

H(?nce,  the sfdutitm  starts with n wavt?s  propagating in tlic same directioli, but with
diffmxmt  speeds. Applicati(m  of the solution (4!5) t c) the next time-steps shows that th<?sc
wavc?s start intcrac.tin.g  ZI,IIC1  the structure of the sc)lution  lxx-. onlcs as complex as the linear
wave interference.

For  tllc cas(? (S6), il~stead  c)f (!58) one obtains

i.e. , a similar wav(?  train pr(q>agat(?s  in opposite  direction.

Let  us rcpl:m?  th(? condition (S2) by the following:

(59)

(60)

Then at some of the critical pc)ints (53):
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Sgn E(t) = o (61)

ancl therefore, all the the cases  in (32) can occur.

Then, instead of (58) and (!59), the following solution can h obtained for the first
time-step:

(62)

i.e., the scdution starts with two trains of waves propagating in opposite directions,

In all the cases wh(m the m(?ssagy  c depends on time, Eq. (3!5) remains linear (but
with variable ccdicimts).

5. SYSTEMS DRIVEN BY STATE-DEPENDEhT’l’  E V E N T S

In this sectitm  we will discuss more cmnph?x  structure of the input message e assuming
that it dcpcncls up(m the state variable v:

& = E(V) (63)

Wc will start with the simph?st  case when

(64)& = –~%> ‘)’2 <<1,

It cm h? vt?rifid by qudit atiw?  analysis of tlm system (compart? with Eqs. (48) and
(49) ):

i) = ou (66)

that its solution will ranchnnly oscillate about the point v = 0.
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Incld, when v >0, then sgn e <0, and v clccrewm; when v <0, then sgn e >0,
ancl v i ncrealses. But when v = O, then sgn e =: O, and the solution can escape the point
v = O with the same probability 1/2 to the right cm to the left.

The same result can be obtained by a formal analysis of tile solutions (SS), (S9), and
(62). Ld us aSSUme  that the initial condition  v(i = ()) was set Up ralldolllly with the
probability distribution:

(67)

in which h is given hy Eq. (9), and 1 is given by eq. (12).

Since  the area envehqd by the function p(v, i ) in (67) is shrinking, om have to turn
to the normalized distrilmti(m  (see Eq. (37):

AS follows fr(ml (68), in a finite  tilne

T == :-

(6s)

((N)

the. solution degcm?rates  into a i-function.

This means that tht? solution will arrive? at tile point v = O with the probability 1.
Hc)wevcx, at this point

and

Sgll & == o

Eq. (S7) must be replace hy Eq. (62) at n = 1

During tht? next tilnc? step the solution will be:

14
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This clcmrihs  the onset of diffusion of the ii-function in both directions. However,

for t >;, Eq. (62) must be rep]acecl  back by Eq. (S7) since now sgn e # O, and the
solution approaches the attrac.tcm  v = O again as a 6-function. This pcrioclic (in terms  of
prc)ldility)  process corresponds to random oscillations of the dynamical system  about the
point v = O which qualitatively was described abcn’e.

In gcmcd case when n >1, the behavior of tht:  solution following from Eels. (W) and
(64) remains qualitatively the same, with the only difference that the periodic behavior of
the solution around the point v = O is replaced by multi - periodic one, while the largest
amplitude of this oscillations:

A == ?1]10 (72)

Let US assume that instead c)f (64), the functi(m

& ,, &(l))

has several zeros

&(l~~)  = 0, and &(l~j)  = O, i,~ = 1,2, “ “ “ etc.

whcm

(73)

(74)

(75)

Start with the case when th(? largest stc?p in the gcneralizt?d  random walk is larger
than the larg(?st  dist ante bt?t ween the neigl hming zeros ~) j:

Then the solution will eventually visit all the zt:rc)s  ~~i with the probability proportional
tO t i le  clistance  I ‘l)j —  ‘Vj – ] I WhWC?

(77)



In the case when the largest step nhw is less than some  of the clistancm between  the
neighboring Zt3rOS  {Jj:

(78)

the solution will lx? trappc?cl  in thebasinsof  thesezems  IJ1 for which:

&=

/

&(z))dt) (80)

This mmns  that the dynamical system  (65) (66) c:in be Cxploitc?d  for finding local
minima of an arbitrary flmdion  (80) such that them minima will bc visited by the solution
with probabilitic?s  pr(qxmtional  to the sizes of their basins.

That “rule” can be rmrrang<?d if one introduce in Eq. (13) tlm following change  of
variables:

‘y = 2(1 +p~&2),  p == Collst ( 8 1 )

TheI~,  with rt?fc?rmm? to Eqs. (1~), :tlld  (18), one c’OIK.]d(?S, that in the dynamic:il
systmn (G!j), (66), the largest step h of the gcmerdi  zd r:indom walk will depmd  upon the
depth of the minimum of th(? function (80):

H = ?A(l + /Y&2), /? Const (~~)

Hence,  the soluti(m  c)f the dynamical systx?m  (6 S), (66) quipped  with the additional
rendition (81 ), will now visit the loud  minima of tile function (SO) with prc)ldilities  which
are prcprtional  to their dc?pt  hs as well -as the sizes of tht?ir 1 resins. In other wends, this
dynamid  system, with suffici~?nt  ly large  /3, will fi ml the global minimum c)f the fund ion
(80).

Mort?  sophisticated “rules” of performance of the dynamical systcm (6 S), (66) can be
implcxmdx?d by changing the functi(m p in Eel. (13);
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6.  EVENTS DEPENDING UPON STATE VARIABLE PROBABILITIES

The c.cmplexit  y of the dynamical systems considered almve will be significantly en-
ridd if events  depend upcm pmldilities  of the state variable v , and in particular, upon
its statistical imzwiants  such as expectation, varimlce,  etc-

Starting with the dynamical system

assulne t hat

u = yU’/3 sin cd + E

i) = ctw

in which ~J is the mat hematid expect ation:

pm

(83)

(84)

(85)

(86)

Two fundmmmtal  pr(qmrtim  make the system (83), (84) differmt from all the previous
Cases ,

Firstly, this system  is coupled with tht? associated prohahility  equqtion (35) since it
cmtains  the proldilit  y distrilmtifm  @ as a m?w mdmc)wn  (sec Eq. (86)).

Suxmclly,  th~?  prolml)ilit  y equation (3!5) bec.o]ms  nonlinear since now the variabk? p
explicitly dcqxmds  upon the unkmwm  distribution q$(v, i) (SCC Eqs. (32), (M) and (86)).

N(?verthdess,  Eqs, (83)-(W) am sil:l~)le  enoI@l  tc, be trmld  analytically. Indeed,
considm th(? problem with the initial condition (67). As follows from the symmdry  of (67)
with respect  to v = O:

U=() at t=o (87)

and t hm’ef( )IY?
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Sgn & = o at f=o (8S)

The governing equatifm  for the probability distribution for this cam is obtained from (35)
by salting

~=; (W)

Hencej  the scduticm  to Eq. (35) starts from a symmetric diffusion, and therefore, the
ccmditions  (87), (S8), and (89) will persist. Eventually the Soluticm  will approach zero:

4(”, ~) –+ o, i? -+ co (90)

Thus, despite an apparent similarity bdwwm  the dynamical systems (65), (W) and (83),
(84), (8S), their bdmvims at the same initial conditions are significantly diffc?rmt.

As a scmmd c?xample,  rt?ljlace  Eq. (M) by the following:

& = +[LC — (Gfi)2],’y << l,L = Collst

whcm?

and analym tlw s(duti(nl at the f(dlowing initial conditions:

Since  at t = O

(91)

(92)

(93)

(94)



Sgn 15 = – 1

the initial probability distribution (93), will shift to the left until

Sgll & = o

(95)

(96)

Fcm a simpk? random walk, i.e., when n = 1, the solution to Eq. (3S) for ~(v, t) has
the form c)f a single  wave propagating without clefommtion
state (96) can be fmmcl  analytically.

Inchwcl,  since  the solution 4(v, t) can be represented

where.  a] and
respectively.

Then tht?

(see Eq. (57)). In this case the

by a moving rectangdar, one.

(97)

az are the cxmrclinates  at tile right and the left mlds of the rectangular,

condition (96) occurs  when

7al := —L
12

The solution (99) is stable sinc(?

(98)

(99)

(loo)
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Hence,  the dynamical system (83), (84), (91) subject to the initial conditions (93)
eventually approaches a stationary stochastic process with the probability distribution
(99). However, this distribution depends upon the initial conditions (93) ancl therefore, it
does not represent an attractor.

SUCA a simpk? analytical result  COUIC1  be obtail d only for ?1 = 1. If n >1, the initial
probability distrihtion  changes its original shape.

7. MULTI-SCALE CEIAINS OF EVENTS

In many problems of operation research, ad especially, in decision analysis, one class
of events  can be much mcnw important than snot]] m-, so that in the presence c)f the first
class of events c 1, the second class &2 become decisive. h terms of the clynamical  system
(l), (8),  (17), and (33), (46), this condition can be incorporated by modifying Eq. (46) M
following:

&  =  ~&] +  62E2, 0<6<1 (101)

Here e] ancl e2 can be c.onsick?rd  as functions of time?, state variable and their probabilities,
i.e.,

E] = El(i, v, fi>. . .), ’52 =E~(i, v,ti,...) (102)

Olwiously, the second term in Eq. (101) can be ig:mrc?d  if &l # O at the critical points
(12), However, if &l = O, but .5z # O at thc?sc points, then the dynamical system  is driven
only by the?  event &Z.

The evaluati(m  of the proljal)ility distrihticm at v is d(?scrihxl  by the same equations
(3 S), and (36), but Eq. (32) defining the proldjilit  y p in there should bc modified as
following:

{

1 if s.gn c1 = 1, or sgn &l =- O, but sg]l E2 = 1

p = O if sgn &l = –1, or sgn &l = O, but sgi~  E2 = –1 (103)
1
2T if sgn &l = 0, and sgn eQ = O

In the same way one can introduce  a multi-scale chin of events by modifying Eq. (101)
as following:

E=dc]+62E2 +.. .+&,l,,1, 0<6<<1
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with the corresponding mollification of Eq. (104).

I 8. MULTI-DIMENSIONAL SYSTEMS

So far we were discussing the dynamical systems with cmly one state variable v (while
u, x and y playecl  the role of auxiliary variables). 11 owever,  a11 the results obtained above
can be generalized tc) clynamicd  systems which are charactcrimcl by the state variables
1>1, i=l,2 --.71.

I Let us start with Eqs. (1) ancl (8) ancl rewrite them in the following form:

1/3
5: =  Xl sin ot, ~i =  X : (105)

A S follows frol~~  (11), the probabilitit?s  ji c ji (~i, t ) W~ gOV(V’ll(?Cl by the difference eclu~-

tions:

where  h is expxx?ssccl  by Eq. (9).

By changing variables

(107)

one can f)l~tain a stochtistic  prcxxss  with a presc] ibd probability distrihtion.  Indeed,
since  ~~ in (105) iw~ statistically inclependent, the joint probal )ility

f(y~ ,y~ 00 C!/tlt~) == nv–lfi(!/i,~) (108)

and tllcr(?foll?,  the? joint prolcxhility  for Zi

(109)

Hence,  the dynamical system (105), (107) charzicterizccl  by the state variabks  z,, ” o “ z,,
pcrfcmns a ranchnn motion with the joint prc)babili  t y function (109) founcl with the aid of
the diffc?nmce  Cquations (106).

21



For better interpretation of Eq. (109), reduce Eqs. (107) to the. following parameter-
izecl  form

i=@ ‘J)T“ “Yj , ( 7 ( ” )  =  
tZiIlll (“), l’ij “ ~ol~st (110)

Here U(”) is a sigmoid function, while the representation (110) is “borrowed” from the
neural net work architect ure.

?1

vi = Z/‘T~ja-l(~j),  a-](.)  = Arctanh  ( . )
i=]

and T/j  art? L?l(?lll(?llt  S of the inverse matrix II  T/j  \l

\[T/jll ‘= llTij\l-  ‘

Since

cme obtains insteacl  of (109) :

(11”1)

(112)

(113)

(114)

AS follows fr(nn E(]s.  (106), cach variabl(? vi pc?rf(mns a siml de symmetric unrestricted
Ian[lom work, and t hel’c?f(.m,

Howcwcr,  as follows from Eq. (110),
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and consequently,

‘1<.Zi<l (115)

P(ZI , “ “ “Z,t, i)+o :it i+m (116)

(Otherwise the ccmditicm J_mW  p(z,, . . . z,,, t)dzl . . . dz,,  E 1 cannot 1X! enforced).

Thus, the solution to the clynamical  system  (105), (107) approaches a steady stochastic
process (i. e., a stochastic attractor) with the joint probability exprt?ssecl  by Eq. (103) at
t-+ co:

po(z~ . . . %) =y(2,  . ..z.,, i) at t -+ cc) (117)

Obviously pO is uniqudy defined  by the constant 2!~j via Eqs.  (111) and (1 13), ancl there-
fore, m:e can prc:scrilx?  the joint probability ~0 by al] appropliatc  choice of these constants.

Applic.ati(ms  of stochastic.  attractors to information procxxsing  were  cliscussd  in [3,4].

Let  us turn now to Eqs. (33) and (17) and generalize  thmn to the follc)wing  system:

~)i = fiul (119)

where  o is cxl)resswl by Eq, (17),

Th~II OI~e  arriv(?s  :it the differmm? equations for the prol)abilities ~i (Vit ) similar to
c!qs. (35), (30):

Ht?re,  with rcfermc:e  to Eq. (32):
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ancl with reference  tc) Eq. (23):

1 if Sgll &i = 1
0 Sgll ~i “ ‘1 (121)
~
2 if~=()

(122)

WllCrC ~i is ddiIId  by Eq. (106).

So far the variables ~~i in Eqs. (1 13) a]]d (119), as wdl as the probabilitim  ~~i in Eq.
(120), are independ(?nto That is why the jc)int prc)bahility  q$(q, . . . v,,, t) can be found as:

Hcre 0,0 ‘1, Tij al~d  T/j ZW~ defined by eqs. (110), (111) til]d (1 12).

Then the dynamical systmn (1 18), (1 19) is ex])ressd  via tile IleW variablc?s  u)i:

1/3Iii = $9i(j(i))U: sin Cdt + &i[t> l~i(U)]  , “ “ “ ~1’1,)1 (125)

.

The joint prolxhility  O(WI,. . “ w,,, t) is founcl from Eq. (123) by formal change  of varialh:

(?(UJ], “ “ “ W,,, ‘;j IIi) = q!$)l(u)l, . . . u),,, ),” “ .V,,(W1,  o c . w,,)]  Dd II ~ _ ~2 (127)
J
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Thus, the dynamical system (125), (126) represents an n-dimensional generalized ncm-
symmdric  randfnn  walk.

After each time period -r = 27r/w, all tl]e variables ~i ckmge their values on

where wl(l~) are ralldolll  variables: their probability densities follows from Eqs. (106) and
(122).

The sizes of the stt?ps  ( 12S) can be cmm?latd  if one introduces the following cons-
traints:

111

)~ flijpj(y(j)) =  0, Qij =  cc)l~st ,  7)1  <7 1 , (129)
i==]

wlmre,  fOr tllf? C.(>llC.r(?tCll{?  SS,  p : ( - ) Call be dlOSell  W:

$91(.) ‘= tallll(.) (130)

By appropriate? choice O f  tht~ cwc?flicients  flij, 011(? CZUl cn?atc m o r e  and lC?SS pl~fc?rable
transitions of the dynamid system from one state to another.

The dimdions  of the st(?ps  (12S) are gov~?rned  l)y the signs of the eveds &i. Therefore,
according to Eq. (125), th[?y d(?pmd  upon the time i and the st :ite variables u):. In gmeral
case they c:Ln ah dcpcmd upon the st:itistical  invariant ~~1> ii~~ etc.

Special attxmtion  Sh(mld 1)(? paid to tllc brand}ing  points itt which

E:=o

At these points the. direction of the nmt  step is not defined:

(131)

A’U~i ‘= +~i(~l), (132)

Sc) with an equal l~rf)ljal~ility 1/2 the variable U): Cal] 111OVL?  in positive or ncy@ive directions.
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From the vic?wpf)int c]f informaticm  processing, the. branching points arc very inlpor-
tant:  they incorporate the probability of “sudden” changes in the behavior of the dynam-
ical system. Obvicmsly,  tht? location of these points as well as tile domains of positive and
negative &: can IX? uniquely prescribed by the constants 7’ij.

Thus, the. behavior of the dynamical system (12 S), (126) is uniquely defined by tile
joint prollabilit  ymdutiou(127),  andit  calll>el~rescril]ccll>y  tl]ealll>rol~riate  cllc)iceoftlle
col~stallts  Tij and f~ij.

It sl~c)~llcl  l>ce~~~l)llasizecl  tl~at thevarialhu~ii  ntlmsystem(12S),  (126) arecouplecl
in two different w:iys: th(? co(?fficients  G?ij  provide statistical correlation between  the sizes
of steps  ~~~i, while tile coefficients T ij correlate tl)e state-clc~l]cllclcllt events &i which are
rcsponsihle  for dirt? ctions in which the dynamical system moves.

Hence, evc?n a hief {inalysis of the perf(mnance  of the dyn:imical  systcm (125),(126)
demonstrates that th~?  C. fmplexity  c)f its behavior )natches  the c.omplcxity  of behavior of
typical {list.r~?te-c?vc?llts systems wllicll  occur in information pr(m?ssing  structurm, in social
dynamics, in decisi(m  making processes, etc. At {he same time,  this dynamical system
pcmcsscs  a rf?lativdy simple and fully tractable al) al ytical st rllcture which allows one to
analyze it not only mmeric.ally,  but qualitativ(?ly  as well.

!3. SYNTIIESIS  OF D I S C R E T E - E V E N T S  S Y S T E M S

So far (mr attention was foc.ust?d  (m analysis of terminal models for discm?tc  events
dynamics. In this sc?c.tion  wt? will draft possible aplnwacht?s  to synthesis of th(?se  systems.
Since? the discr<?te-cwmt  dynamical systems discussed alxm? , tire uniquely d(?fincd by the
~ol~st:~llt  parameters T ij and flaj (in the SCIIS~ th:it these  paramctcm uniquely ddil~e the
evolution of joint prohhility of the statt?  varialdes,  given by 13cl.  (127)), the prol~lem  of
the synthesis C.M~ h? rt?ducc?d to finding the paramde~’s  Tij and G’ij in SUd~  a way th:it the
objc?c.tivc  of tht? pcrf(nmancc  is achi(?vd.

We will c.onsid(?r  four pxx)blems of tllc synthesis assoc.iatcd  with systems iclc?lltifi~::~tioll,
optimization based up(nl global ol)jec.tive,  ol~timizat  ion based u]xm 1(MA Iul(?s,  and systems
with colkctive brain.

a. System Iclentiflcation

TIM? prolk?m  of syst(?m  identification arisc?s  wlmn the ma]  yticd structure of the dy-
namical process perftumtxl  l)y the system is unknown. Then, based upon experimental
data, a lJllt?llolll(?llologi(:al  version of the dynamical system wh ic.h has an idcmtical  input-
output characteristics is dc?vel(qxd. For  deterministic systems, the process of paramt?tcr
identification reduces to a nonlinear optimizaticm  problem. The same approach can be
formally applid  to a discrete-cmmt  system if the ohjectivc  is to reproduce its behavior
in terms c)f state varial~h? prohahility evolution. Indeed,  in this case onc can turn to Eq.
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(127) which uniquely defines  this evolution in terllls  of tll~ paral~let~rs  l_’ij ZU~C~ ~ij ZHIC1
solve the inverse problem of finding these parameters frcnn given input-output data [2].

Recently, along with the fond mathematical appro:ich to system identification, sev-
eral biologically inspired methocls  borrowed from tile neural  nctlwc)rks  theory were  devel-
oped. h connection with the discrete event  systems, the strategy for application of these
methods may be the following.

Lt?t us assume that experimentally observecl  bdmvior  of the system  can be statistically
approximatt?d  by a histc)gram which describes the clistributioll  of frequency with which
certain states an? visited by the dynamical system. Such an approximation is biologically
meaningful sinct? the frequency mentiomcl above is propcwtional  to the strength c)f the
memory  tracx?  for the com?spmding  pattern of behavior.

If the experimental histogram is presented m

(133)

then, int reducing the “eliergy” function:

one can derive the following”  lmrning  dynamics:

(135)

whm! ()(10] , “ “ “ w,,, T ij, C!ij ) CtU~ be fo[ll]d M ~ solution to E(I. (127), or it CXU] b~ rcprodud

by the dynamical sySt~lll  (125), (126) for edl particular $ij :~11~1 f~ij.

The system (135) will c.omx?rge  to a minimum (which will be a global minimum if @
is a quadratic f( )rl~l  of Ti j, al~d Cli j ), since E lJlays  the role of tl~~? I.ytipuIIov  function.

b. Optimization Basecl  IJpon Global Objective

h many prolhns  of operati(m  rcsearc]l,  the 01 jjective of the performance of a discrete
cvcmt  systc?m is to minimize expcc.tations  of a cert:tin  coml~ilmtion  of state variablm with
possible const mints imp(xwd  upon other statistical invariants, for instant:
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or

pt2

(136)

(137)

while

CICXWly  the sc)lution  to the problem of finding the optimal ValUeS of T ij and $lij for
tlleclyl~al~lit:alsystel~~  (12 S), (126) ll~il~illtizil~g  tl~el  JerfcJr:l~:il~f`.e  i1~clices(l36), or (137) can
bc reduceclto  th cast? (134), (13S) consich?rt?d  above.

c. Optimization Based Upon Local Rules

In many real-life. situations , a member of a 1 )iological,  or a social system does not
have an explicitly f(mnulatcd  global objc?ctive fox the w1101c  systcm. Instead, it has its
own local objective which can be partly colnpatibl(! with, and partly contradictory to the
lcxal objet.tivcs of other meml~(?rs. In addition to that, each member may try to ccq>y the
behavior of a “successful” neighbor, or a leaclc?r,  based upon local rules, and these mlcs
coupl~?  th evolut i(m of all th~? mcml)ers  of the system. Evel”ltually  such a Systcm may
approach a state wllic.11 can lx: intcrpretd  as the g,lobd objcctivc  of the pmformanc.e.

Let us turn to analytical f(mnulaticms  c)f the local rules.

TIN local obj(?ctives  of each member (or , a (lynamical  unit) can be introduced by

Clearly, Eq. (140) dd31~(?s  ody tht? diagonal el~l~l(?]lts  “of the 11] atriccs Ti j and Qij.

2s
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In ordc?r  to d(?fine  the non-diagonal elcnnents of these matrices, first we will assume
t h a t  tll~ indeces ‘i and ~ Of th6? 6!lEUll~lltS  T:j and flij are related  to spatial locations (cm
c.oorclinates)  c)f tile ccmwspcmding  elements so that the positive integer [ i — j [ is propor-
tional to the spat.ial distance lx?tween  the dymmical  units characterized by the variables
~~i al]d ~ j. Thc?I],  it c.aI~ be assuI~~ed that T ij is inversely proportional to the distance
[ i -j 1, (i # j). Inclced,  it would mean that the close. neighbors effect  each other behavior
more strmgly than the mom distant ones.

However, the spacia] distance between the dynamical units is not the only measure of
the clcgree  of intmac.tion  between them: the distance in the func.ticmal  space may occur to
be cwm more impmtant. Such a distance between the units i and j can be introduced as
the SCalar I ~~i – ~~j 1. Thex~  the 10cal rule for the non-diag(ma] el~l~lel~ts  can be formulated,
for imtancc?,  as following:”

(141)

where  n is a constant of tllc same clilll(?llsiollality  as 1 /w2 , and @ is the constant. The
coefficients Qij (i # ~ ) Call k [ldhd in a similar W:iy.

As follows”  from Eq. (141), the interaction between two dynamical units increases with
the decr~asc  of both the spatial distance I i – ~ [ and a functional distance [ ~~i – ~~j 1. h
simple words, it m(?al]s  that the strongest interaction occurs lx:tween  close neighbms who
are in the same ‘iincmne’) ljracket,

As a result of tht? local IUIC?S (140), and (141), the dynamical system (12S), (126) will
evmtually  approach some stochastic process which can IN? associated with a certain opti-
mization problem defined implicitly via these  rules. Howc?ver , in general it is a very difficult
(if not an impossible) task to r(?construct  th(? global objective of the systcm performance
basc?d oldy up(m tile local rules, Ijut with(mt  an actual run of t,l]c system.

cl. Systems with Collective Brain

The c.onc~?l]t  of the cx)ll(?ctive  brain has aplxxm.cl  rec~?l]tly  as a sul~ject of intmsive  sci-
entific discussions fr(nn theological,”  biological,  ecological, social, and mathematical view-
point [4]. It can h int roducc?d  as a set of sil~~ple  uu its of intc?lligmlc.e  (say, neurons) which
can commmlicat  c? by t?xcl]  ange of informat i(nl withollt explic,it  global control. The objective
of each unit may b(? part] y collll)atil~le  and l>art ly c.( mt radic.  tory,  i .(?., the units can cooper-
ate or cmnpcte. Tht? exchanging inforlnatioll may I)(: at times incol~sistwnt,  c)ften  imperfc?ct,
non-det  mminist ic, and delayed. Nevc?rtheless,  olxwrwtiorls of working insect  colonies, so-
cial systems, and scientific c.(mnnunities  suggest th[it such collectives of single  units appear
to be very suc.c(?ssful in achi(?ving  global i)bjectivcs , as WC?ll as in learning, memorizing,
generalizing and l)redictillg, due to their flcxil)ility,  aclaptal~ility  to mvironmcmtal changes,
and creativity.
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In [4] collective? activities of a set of unitc?s  of intc?lligence  were  represented by a dynam-
ical system which imposed upon its variables differmt types of non-rigid constraints such
as probabilistic correlaticms  via the joint density. It was assmm?d  that these probabilistic
corrclaticms  are hxwnecl during a long-term period of performing collective tasks. Due to
such cormlat ions,  each relit  can predict (at least, in terms of expect at ions) the values of
parameters charac.tc?rizing the activities of its neighbors if the dircx.t  exchange of informa-
ticm is not available. Thcmfore,  a set of units of intelligence possessing a ‘(knowledge base”
in the form of jc)int density function, is capable of performing mllect ive purposeful tasks in
the course of which the lack of infcmnation about current states of units is compensated by
the predicted valm?s  characterizing these states. This means that actually in the collective
brain, global control is Ieplac.c?d  by the probabilistic. correlations M wmm the units stored
in the joint density functions.

h the fram?wcmk  of the discrete events dynamics c.onsiclm(?d  abcnw,  the collective
brain paradigm can I)e incorporated in the. following way.

Ld us MSIUne  that each n~emher  (or a dynamical unit) characterized by the varialjle
‘UJ1,  has its own version of the global objt?ctive  of tile whol~? dynamical system  which Can
h expressed in th(? f(mn similar to (136):

(142)

while, in gmcra,l,

Ei#Ejifi#~ (143)

Each unit can l(?am (in its own way) the global ol~jec.tivc  of the system during previous
collect ivc tasks. Based upcm that, it may ‘Ldorive”  “Its own version  of the learning dynamics
similar to (’13S):

(144)

and thcrefort?,  its (nvn vt:lxion  of the whole. dynamical systt?ln  il] the form similar to Eqs.
(125) and (126):

(145)



1=1

Here ui, wlj. . .w,l are the actual values of the varialh  characterized the clynamical
(k) (k)

SyStC!lllS,  a n d  U: >U~: ,“ “ ‘W,l(‘) are the. values of the same variables predicted by tl~e kth
(i)dynamical Illlit,  while U i = Ui,wy) =  Wio

It is assumed that in the ccmrse  of performance of the original dynamical system (125),
(126), l~ot dl the actual ValUeS of the varizibles ui and wi arc? available. h this case, the
unavailable? variables arc Yeplact?d  l>y their predict ml values, while each clynamimd  unit
predicts them basf?d  upon its own version of the dynamical system  (see Eq. (145).

Hence,  as a result of the collective? brain paradigm, the original dynamical system
(12S), (126) of 2?1 cquatitms  with respc?ct  to 2?1 variabk?s: 11 I all(l W: is XX!l>laC.d  by t lle SyS-
tem (14S) of 2?12 ~?quati(ms with respt?ct  to 2?12 variables: u\~) and W$k)  (i = 1,2, 00071, k =
1,2.. . n).

Since the last system  has the sam(?  dynamical structure as the original dynamical
syst~?m  (125),  (126), its solution can be d(?scrilxxl  by ?12-clilllc?llsiollal  joint probability
similar to (127):

(1)
@ == (3( W,,..  .W, ,,WI ““”wy .“wp ““’up)

As follows from Eq, (146), the dynamics with the collec.tivc  lmiin

(146)

is less predictal~le
than the original clynamim. How(?vcr,  in cmtradist  inction to t] lC original dynamics which
requires a glolxil C.(mtr(d  for its perf(mmmce, the last version of dynamics is more flexible:
it can pcrf(mn  relatively well based upon t llc auto] ) (uny of t hc dynamical units which can
predict the cwents  if the actual  values of the varialjles are not available.

The autxmomy of th(? dynamics with coll(?ctivt?  brain can h: increased if each unit can
have not cmly its own vmsim of the glolxd ol~jcctivc  of the system, but also its versions of
the global objectiv(?s  of others  dynamical ulli ts. Cl(arly  such an al~ility  will require decpr
c.orrclaticms  bc?twc?(?n  the? d yllamic.al  units wlli ch cm] be achimxxl  l)y more intensive h?arniug
during the? prc?vious  collective  tasks. From th~? analytical viewpoint,  the complexity of this
dynamical system will be significantly higher: the system  having the same structure as Eqs.
(1215),  (126), (n (144), (145), will contain 2n3 equations with respect to 2ns varial~lcs.  h
the same way one can intr(xluc~?  mm: aut(m(mmus  (but m(m cxnnl)lcx) dynamical systems
with collective? l~rain of higher  clilll(?llsic)ll;~lities.
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The discrete event dynamics c)f the type (145), or of its Inore complex versions men-
tioned above, can be linked tcj game? theory. Indetxl  here each ith player  (represented by
the corresponding variable U):)  tries  to acllievc its local C)bj(?ctive by taking into account the
knowledge about possible. local objectives of anc)ther  players. Howcwcr,  in col~traclistil]ctic)ll
tc) the classical game theory which can be associated with artificial intelligence (since it
is based upon sets of ruh?s ancl strategies), the discrete event c1 ynamics version discussed
al~ove,  can be ratht?r  associated with neural  networks: it is rcpreisentecl  hy a dynamical
SyStelll,  WICI the kIlOWl(?Clge  is  acquirecl ancl s t o r e d  in tht? mcfficicnts  T:j and Qij in t h e

c.cnwse  of lc?arning,
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